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Abstract—Identifying application layer protocols within net-
work sessions is important when assigning Quality of Service
(QoS) priorities as well as when conducting network security
monitoring. This paper introduces a Statistical Protocol IDen-
tification algorithm (SPID) utilizing various statistical flow and
application layer data features. We have identified application
layer protocols by comparing probability vectors created from
observed network traffic to probability vectors of known pro-
tocols. Promising preliminary results are presented, showing
average precision of 100% and recall of 92% for a small set
of protocols within traffic traces from an access network. To
further improve the results, a number of ongoing and future
directions with SPID are discussed, such as optimization of
the attribute meters and improving robustness against different
network environments.

I. INTRODUCTION

Today, there is an increasing need for reliable classification

of network traffic according to application layer protocols.

Traffic classification is required for operational purposes,

including QoS and traffic shaping mechanisms, optimization

of network design, and resource provisioning. Furthermore,

understanding the type of traffic carried on networks facilitates

detection of illicit traffic, such as network attacks and related

security violations. Modern firewalls, NATs and IPSs need

to be able to reliably identify network protocols in order to

implement fine-grained and secure access policies. Besides the

apparent interest of operators and researchers to understand

trends and changes in network usage, there have been a

number of political and legal discussions about Internet

usage (e.g. RIAA vs PirateBay), which further amplifies the

importance of accurate traffic classification methods.

Currently, there are roughly four approaches to classify

network traffic according to application protocols [1]. Tra-

ditionally, traffic was classified with sufficient precision by

simply looking at TCP/UDP port numbers. With the advent

of P2P file sharing systems and their legal implication due

to copyright concerns, more and more applications started to

use unpredictable dynamic port ranges or reused well-known

ports of other applications, which yields poor results for port

classification methods on modern network data [2], [3].

This development led to a wide use of deep packet inspec-

tion (DPI) for classification, which means inspection of packet

payloads for known string patterns [4], [5]. DPI is currently the

most reliable way to classify traffic, which explains its pop-

ularity in commercial tools. However, examination of (user)

application layer data causes substantial legal and privacy

concerns. Furthermore, DPI with static signatures is rather

resource-expensive and does not work on encrypted traffic,

which is becoming common as a reaction to legal threats.

As a result, the research community began to work on

classification techniques independent from payload inspection.

One such approach is to classify traffic based on social

behavior of hosts by looking at their connection patterns [6]–

[8]. While some of these methods are quite successful, they

are only able to classify traffic in rough categories, such as

mail, web or P2P traffic.

Another recent, payload independent approach is classi-

fication based on statistical flow properties such as duration,

packet order and size, inter-arrival times, etc. [9], [10].

In this paper we introduce SPID, the Statistical Proto-

col IDentification algorithm, which was designed by Erik

Hjelmvik [11]. The SPID framework is built to perform pro-

tocol identification based on simple statistical measurements

of various protocol attributes. These attributes can be defined

by all sorts of packet and flow data, ranging from traditional

statistical flow features to application level data measurements,

such as byte frequencies and offsets for common byte-values.

In this sense SPID is a hybrid technique, utilizing efficient

generic attributes, which can include deep packet inspection

elements by treating them in the same way as statistical flow

properties. A proof-of-concept (PoC) application for the SPID

algorithm is available at SourceForge1.

II. SPID DESIGN GOALS

The main goal of the SPID algorithm is to reliably identify

which application layer protocol is being used in a network

communication session in an easy and efficient fashion.

SPID should not only be able to classify traffic into rough,

coarse-grained traffic classes (such as P2P or web), but in

fine-grained classes on a per-protocol basis, which would

enable detailed QoS assignments and security assessment of

network flows.

1http://sourceforge.net/projects/spid/



Fig. 1. Protocol identification data flow

Many application layer protocol identification schemes used

today rely on signatures or patterns that usually occur in proto-

cols, e.g. ’BitTorrent protocol’, ’SSH-’ or ’GET / HTTP/1.1’.

A problem with looking for such static patterns is that the

fingerprints need to be manually created, which means that

network traffic and protocol specifications need to be studied

and abstracted in order to create a reliable identification pat-

tern. However, creation of application layer signature patterns

can be automated, as shown by Park et al. [12].

Several protocols use obfuscation and encryption in order to

prevent identification through static pattern-based signatures.

Protocols that utilize such obfuscation techniques include the

Message Stream Encryption (MSE) protocol (applied e.g. by

BitTorrent) and Skype’s TCP protocol. Manually creating sig-

natures for proprietary protocols lacking documentation - such

as Skype, Spotify’s streaming protocol and botnet command-

and-control (C&C) protocols - can be very troublesome.

An important design goal of SPID is therefore to replace the

use of pattern matching techniques with entropy based compar-

isons of probability distributions. Doing so eliminates the need

for manually extracting inherent properties of protocols, since

the SPID algorithm has the ability to automatically deduce

properties from training data. The training data used, however,

needs to be pre-classified, which can be done through manual

classification by experts or by active approaches, as in Szabo

et al. [13]. A further goal of SPID is to allow protocol models

to be updated easily as new training data becomes available,

without having access to the previously used training data.

The required manual efforts for adding a new protocol are

thereby shifted from detailed protocol analysis to assembling

training data for that particular protocol. This is an important

change since manual creation of static protocol patterns is a

time consuming task, and new protocols continuously appear.

Many new protocols are furthermore proprietary and undoc-

umented binary protocols, which require advanced reverse

engineering in order to manually generate protocol patterns.

The SPID algorithm does not require support for advanced

pattern-matching techniques, such as regular expressions. By

providing a generic XML based format to represent protocol

model fingerprints, SPID is designed to be both platform and

programming language independent.

Further operational key requirements for the algorithm are:

1) Small protocol database size

2) Low time complexity

3) Early identification of the protocol in a session

4) Reliable and accurate protocol identification

The motivation for requirements 1 and 2 are that it should

be possible to run the SPID algorithm in real-time on an em-

bedded network device with limited memory and processing

capabilities. Requirement 3 should enable the use of the results

from the SPID algorithm in a live traffic capturing environment

in order to provide QoS to an active session in real-time, block

illicit traffic or store related traffic for off-line analysis. An

implicit goal is therefore that protocols should be identifiable

based on the first few packets with application layer data.

III. OVERVIEW OF THE SPID FRAMEWORK

As illustrated in Fig. 1, SPID performs protocol identifica-

tion by comparing the protocol model of an observed session

to pre-calculated protocol models of known protocols.

Fig. 2. Generation of protocol models

A. Protocol Models

Protocol models contain a set of attribute fingerprints (Fig.

2). Fingerprints are created through frequency analysis of

various attributes, such as application layer data or flow

features, and are represented as probability distributions. The

PoC SPID application uses over 30 attribute meters2, which

are the functions that provide the distribution measurements

for each specific attribute. An example of such an attribute

meter is the basic ByteFrequencyMeter, which measures the

frequency with which all of the possible 256 bytes occur in the

application layer data. Other attribute meters perform much

more advanced analysis of various properties in a session,

such as measuring the frequency of various request-response

2http://spid.wiki.sourceforge.net/AttributeMeters



Index 0 ... 80 (’P’) 81 (’Q’) 82 (’R’) 83 (’S’) 84 (’T’) 85 (’U’) ... 255

Counter vector 7689 ... 1422 502 1001 1482 2644 961 ... 3276

Probability vector 0.026 ... 0.004 0.002 0.003 0.005 0.008 0.003 ... 0.011

TABLE I

EXAMPLE OF AN ATTRIBUTE FINGERPRINT: BYTE FREQUENCY FOR HTTP

combinations (e.g. HTTP behavior, where a ’GET’ request

is followed by an ’HTTP’ response or FTP behavior where

a ’220’ message is replied to with a ’USER’ command). The

SPID algorithm also makes use of flow measurements (that do

not require inspection of application layer data), such as packet

sizes, packet inter-arrival times and packet order number- and

direction combinations.

Attribute fingerprints are represented in the form of proba-

bility distributions. This means that the data for each finger-

print is represented by two arrays (vectors) of discrete bins:

one array of counter bins and one of probability bins (Table I).

Values of the counter vectors represent the number of times

an observation (analyzed packet) has caused the associated

attribute meter to trigger that particular index number in the

vector. Probability vectors are normalized versions of the

counter vectors, with all values in every probability vector

summing up to 1.0. In this paper a vector length of 256 is

used; an implementation of the SPID algorithm can, however,

use any length for these vectors.

B. Generation of Protocol Models

For observed sessions, a protocol model is created upon ses-

sion establishment (e.g. after the TCP three-way handshake),

consisting of a set of attribute fingerprints. Every packet with

application layer data belonging to a session is called an

observation. Each such observation is then fed into the attribute

meters, which provide measurements that are stored in the

session’s protocol model. Upon receiving such a measurement,

the protocol model increments the fingerprint counters accord-

ingly. For illustration, we assume an attribute fingerprint for

the ByteFrequencyMeter from the first data packet observed

in a HTTP session, i.e. a HTTP GET command. The counters

would be incremented to

• 3 for the counter at index 84 (since there are three T’s in

’GET / HTTP/ 1.1’)

• 2 for counters at index 32, 47 and 49 (space, ’/’ and ’1’)

• 1 for counters at index 71, 69, 72, 80 and 46

• 0 for all other counters

All other attribute fingerprints belonging to the same protocol

model will also increase their counters based on the sets

of indices that are returned from their respective attribute

meter. Subsequent packets in the same session will cause the

fingerprint counter values to further increment. However, since

one design goal of SPID is to keep time complexity low, we

want to show in future work that utilizing only the first few

packets provides sufficient precision.

Protocol models for known protocols are generated from

real network packet traces. These traces need to be pre-

classified, either manually or automatically [13], in order to

be usable as training data for the SPID algorithm. The pre-

classified training data is converted to protocol model objects

(one per protocol) by generating protocol models for each

session and merging (i.e. adding) the fingerprints of the same

protocol and attribute type.

The more sessions are merged together for each protocol,

the more reliable the fingerprint will be. As a rule of thumb,

we found that 10% of the fingerprints’ vector lengths (i.e.

approximately 25) turned out to be a rough measurement of

the minimum number of training sessions needed to build a

reliable protocol model.

C. Comparison of Protocol Models

Fingerprints of an observed session are compared to finger-

prints of known protocol models by calculating the Kullback-

Leibler (K-L) divergence [14] (also known as relative entropy)

between the probability distributions of the observed session

and each protocol model, ranging from 0 (identical distribu-

tions) to∞. The K-L divergence is a value that represents how

much extra information is needed to describe the values in the

observed session by using a code, which is optimized for the

known protocol model instead of using a code optimized for

the session protocol model. The best match for an observed

session is the attribute fingerprint which yields the smallest

K-L divergence according to Equation 1. Pattr and Qattr,prot

represent the probability vectors for a specific attribute of an

observed session and of a known protocol model respectively.

DKL(Pattr||Qattr,prot) =
∑

i

Pattr(i) ∗ log2

Pattr(i)

Qattr,prot(i)
(1)

Protocol models of observed sessions are finally compared

to protocol models of known protocols by calculating the K-

L divergences of the models’ attribute fingerprints. The best

protocol match is the one with the smallest average K-L

divergence of the underlying attribute fingerprints. A good

approach is to assign a threshold value, where only K-L

divergence average values below the threshold are considered

matches. If none of the known protocol models match, the

session is classified as ’unknown’ in order to avoid false-

positives for known models.

IV. PRELIMINARY RESULTS AND ANALYSIS

For the following evaluation, the SPID Algorithm PoC

application version 0.3 was used. The SPID PoC application

was set to only analyze the first 20 TCP packets in each session

and used a K-L divergence threshold of 2.25, which proved

to be a good value after a series of empirical tests. However,

a thorough evaluation of the impact of the treshhold value is

subject of future work.



Protocol Training Sess. Validation Sess. TP FN FP Precision % Recall % F-Measure %

BitTorrent 31 1245 1221 24 0 100.0 98.1 99.0

eDonkey 19 3535 2744 791 0 100.0 77.6 87.4

HTTP 101 1333 1293 40 0 100.0 97.0 98.5

SSL 73 30 26 4 0 100.0 86.7 92.9

SSH 43 2 2 0 0 100.0 100.0 100.0

TABLE II

VALIDATION RESULTS PER PROTOCOL

We define a session as bi-directional TCP flows3 identified

by the 5-tuple4. Furthermore, an observed TCP three-way

handshake (i.e. a SYN or SYN+ACK packet) followed by at

least one packet with application layer data is required to

qualify as a session suitable for classification by SPID.

The SPID PoC application is designed to only identify

the application layer protocol in sessions that satisfy the

flow requirements described above. The SPID algorithm can,

however, be used to identify protocols in any communication

scheme where there is a notion of a session, i.e. a uni- or bi-

directional flow. This implies that the SPID algorithm can also

be used to identify protocols that are transported or tunneled

within other protocols such as UDP, HTTP, NetBIOS, DCE

RPC, ISO 8073 or even SSL. This generalized functionality

is not yet included in the SPID PoC application.

The training data for the protocol models is built from a

collection of manually classified TCP sessions from private

sources as well as public sources, such as DEFCON 10

CCTF5, Honeynet.org6, OpenPacket.org7 and pcapr8.

The validation data is a subset of a capture file provided by

Szabo et al. [13]. This trace was collected on an access link

with capture length of 96 bytes, ie. 42 bytes of application

layer data. Since the sessions are pre-classified per client-

side application, and applications might use multiple protocols

concurrently, additional port filtering had to be used to gener-

ate a validation trace consisting of five TCP application layer

protocols only:

• BitTorrent: Azureus sessions, excl. ports 80, 10000,

10010 (HTTP) and 27001 (version check protocol)

• eDonkey: eMule sessions, excl. port 80 (HTTP)

• HTTP: Internet Explorer sessions, excl. port 443 (SSL)

• SSL: Internet Explorer sessions to port 443 (HTTP)

• SSH: PuTTY and WinSCP sessions

A. Validation Results

The results of SPID, with protocol models build from

training data for these five protocols, are summarized in Table

II. Following [15], Precision (or accuracy), Recall (or hit-

ratio), and the combined F-Measure are defined according

to Equations 2 to 4, where TP, FN and FP stand for True

3A bi-directional flow consists of the data sent in both directions
4A set of: source IP and port, destination IP and port, and transport protocol
5http://cctf.shmoo.com/
6http://www.honeynet.org/scans/
7https://www.openpacket.org/
8http://www.pcapr.net/

Positives, False Negatives and False Positives respectively.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F − Measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

The results show that the SPID algorithm has the ability

to perform very good identification of HTTP and BitTorrent

sessions, while performing less complete for eDonkey (78%

recall). On average, SPID yields the following results for the

five protocols analyzed:

• Precision: 100.0% (no false positives)

• Recall: 91.9% (few missed sessions)

• F-Measure: 95.6% (combined measure)

B. Analysis of the Results

The low recall for eDonkey is believed to be due to the

limited number of training sessions (only 19) available for this

protocol. A richer set of training data will likely provide better

results. However, eDonkey is known to be difficult to identify

due to the very limited deterministic application layer data.

While many existing classifiers are prone to generate false

positives for eDonkey [16], SPID produces no false positives

on the validation data with a KL divergence threshold of 2.25.

Both BitTorrent and SSH are considered easy to identify

using application layer data, since they both start with static

protocol banner strings [4], [17]. HTTP on the other hand

is a more loosely described protocol, allowing much more

freedom in the implementation. The fact that all HTTP traffic

in the validation data stemmed from Internet Explorer traffic

might explain why SPID achieved such good results, since the

used HTTP training data mainly stems from web browsers. We

would expect slighly lower recall if HTTP traffic from other

applications had been present in the validation data set, such

as traffic from HTTP tunnelers or SOAP based Web services.

V. ONGOING AND FUTURE WORK

Even though the current proof-of-concept application shows

that SPID can successfully identify network sessions of various

protocols, there is still a lot of work to be done.

As a first step, additional protocol models will be created

and tested in order to be able to identify most modern Internet

traffic. Besides the required training data for new protocol

models, existing models will be enhanced with diverse training

data from different network locations. It is therefore planned



to get in contact with as many interested parties as possible

in order to accumulate a database with protocol models with

enough natural variation. These groups can include academic

institutions, network developers, private individuals or any

other interested parties. Please feel free to contact the authors

if you would like to contribute.

Another crucial step will be to develop an improved valida-

tion framework. Since publicly available, pre-classified data as

used in this paper (provided by Szabo et al. [13]) is very rare,

we plan to adopt a similar approach like Kim et al. [15]. We

will pre-classify our own data using an updated DPI method as

introduced by Karagiannis et al. [6] in order to get a reference

point when evaluating the performance of SPID.

We then plan to empirically test the accuracy of different

attribute meters compared to pre-classified reference data. It is

desirable to keep the number of attribute meters low in order

to reduce CPU and memory complexity, so we hope to obtain

a reduced, optimized set of meters. To each attribute meter we

will provide recommendations, such as application protocols

or network environments where this specific meter turned out

to be especially powerful.

After defining an optimal set of attribute meters, the ro-

bustness of this set is planned to be tested against impact of

the K-L divergence threshold and effects of different network

environments. Some attribute meters, such as those depending

on packet payload, are expected to perform similar in different

environments. However, meters on flow features like inter-

arrival times might be less robust when applied on flows

from backbone links with much higher line-speed compared to

LAN links. Besides LAN and access link data, we will have

the possibility to test SPID on traces collected on 10Gbit/s

backbone links [18].

Protocol identification on backbone links will, however,

require some adjustments to the current SPID application. As

shown in [19], routing symmetry on highly aggregated links is

rare, which means that bi-directional flow data can no longer

be assumed. Furthermore, attribute meters disregarding packet

payload will become more important, since payload inspection

on backbone links is often prohibited due to privacy concerns

and legal implications.

VI. SUMMARY AND CONCLUSIONS

In this paper we presented SPID, the Statistical Protocol

IDentification algorithm. SPID is utilizing various statistical

packet and flow features in order to identify application layer

protocols by comparison of probability vectors to protocol

models of known protocols.

Initial results have been obtained when identifying a small

set of protocols within a pre-classified set of flows collected

on an access link. These results are very promising, showing

100% average precision with a recall of 92%. However,

a number of interesting and relevant future directions with

this approach are discussed, such as optimization of the

flow features used or testing the robustness of the algorithm

against different network environments, ranging from LAN to

backbone links.

We believe that SPID has the potential to become a simple

and efficient classification algorithm, providing accurate and

fine-grained identification of network flows on application-

protocol level. This is important for operational purposes, such

as network provisioning, assignment of Quality of Service

(QoS) priorities and network security monitoring. Further-

more, current discussions about legal aspects of P2P file-

sharing applications add additional value to accurate traffic

classification methods such as SPID.
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