Statistical Protocol IDentification with SPID: Preliminary Results

Erik Hjelmvik & Wolfgang John
SNCNW'09
Network Traffic Classification

- Identify the application layer protocol

- Traffic classification is needed for:
 - QoS assignment and traffic shaping
 - Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS)
 - Deep Packet Inspection (DPI)
 - Network Forensics
Current Classification Approaches

- Port numbers
- Pattern-matching in payload
- Connection patterns
- Flow properties

Automatic traffic classification is difficult!
Validation Results of SPID

Overall results:
• Recall: 91.1%
 (few missed sessions)
• Precision: 100%
 (no false positives)

Results per protocol:
• BitTorrent: 98.1% recall
• eDonkey: 77.6% recall
• HTTP: 97.0% recall
• SSH: 100% recall
• SSL: 86.7% recall
The SPID Algorithm

Protocol identification based on statistical measurements of various protocol attributes

Design goals:
• No manual fingerprint generation
• Low time complexity
• Early protocol identification
An **Attribute Meter** is a function that provides measurements of a specific property (attribute)

A **Protocol Model** contains statistics from over 30 attribute meters
Attribute Meters - The Heart of SPID

http://spid.wiki.sourceforge.net/AttributeMeters

Properties can be:

- statistical flow features
- byte frequencies
- byte sequences
- offsets for common byte-values
Attribute Meters - Example1 (payload)

http://spid.wiki.sourceforge.net/ByteFrequencyMeter

ByteFrequencyMeter:
• frequency of byte values in application layer data

HTTP has a high frequency of:
• 0x20 [space]: 5.4%
• 0x65 'e': 4.0%
• 0x74 't': 3.1%

eDonkey has a high frequency of:
• 0x00 [null]: 11.0%
• 0x20 [space]: 8.4%
• 0x57 'W': 8.6%
Attribute Meters - Example 2 (flow)

http://spid.wiki.sourceforge.net/DirectionPacketLengthDistributionMeter

DirectionPacketLengthDistributionMeter:
 • packet sizes and packet directions

Large **SSL** packets (>1400 bytes):
 • Client to Server: 13%
 • Server to Client: 34%

Large **IRC** packets (>1400 bytes):
 • Client to Server: 0%
 • Server to Client: 10%
Comparing Protocol Models

Kullback-Leibler divergence (relative entropy):
- \(P = \) observed session's probability distribution
- \(Q = \) protocol model's probability distribution

\[
D_{KL}(P_{attr} \mid\mid Q_{attr,prot}) = \sum_i P_{attr}(i) \times \log_2 \frac{P_{attr}(i)}{Q_{attr,prot}(i)}
\]

Small K-L divergence = good match
Future Work

More training data:
• Improve existing protocol models
• New protocol models

Reduced set of attribute meters

Effect of different network types:
• LAN data
• Backbone data

Implement SPID in NetworkMiner
http://networkminer.sourceforge.net/
Try out SPID for yourself!

http://sourceforge.net/projects/spid (SPID download)
http://spid.wiki.sourceforge.net/ (SPID wiki-pages)